On GKM Description of the Equivariant Cohomology of Affine Flag Varieties and Affine Springer Fibers

نویسندگان

  • Sung Gi Park
  • Pablo Boixeda Alvarez
چکیده

For a projective variety endowed with a torus action, the equivariant cohomology is determined by the fixed points of codimension 1 subtori. Especially, when the fixed points of the torus are finite and fixed varieties under the action of codimension 1 subtori have dimension less than or equal to 2, equivariant cohomology can be described by discrete conditions on the pair of fixed points via GKM description of localizaton theorem. We provide explicit formula for the equivariant cohomology of affine flag varieties and prove the isomorphism between the i-th cohomology of affine flag variety and that of affine Springer fibers for i less than the rank of affine flag variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology of Gkm Fiber Bundles

For GKM manifolds the equivariant cohomology ring of the manifold is isomorphic to the cohomology ring of its GKM graph. In this paper we explore the implications of this fact for equivariant fibrations for which the total space and the base space are both GKM and derive a graph theoretical version of the Serre-Leray theorem. We also make some applications of this result to the equivariant coho...

متن کامل

Equivariant K-theory of Gkm Bundles

Given a fiber bundle of GKM spaces, π : M → B, we analyze the structure of the equivariant K-ring of M as a module over the equivariant K-ring of B by translating the fiber bundle, π, into a fiber bundle of GKM graphs and constructing, by combinatorial techniques, a basis of this module consisting of K-classes which are invariant under the natural holonomy action on the K-ring of M of the funda...

متن کامل

Equivariant Pieri Rule for the homology of the affine Grassmannian

An explicit rule is given for the product of the degree two class with an arbitrary Schubert class in the torus-equivariant homology of the affine Grassmannian. In addition a Pieri rule (the Schubert expansion of the product of a special Schubert class with an arbitrary one) is established for the equivariant homology of the affine Grassmannians of SLn and a similar formula is conjectured for S...

متن کامل

Cell Decompositions of Quiver Flag Varieties for Nilpotent Representations of the Oriented Cycle

Generalizing Schubert cells in type A and a cell decomposition if Springer fibres in type A found by L. Fresse we prove that varieties of complete flags in nilpotent representations of an oriented cycle admit an affine cell decomposition parametrized by multi-tableaux. We show that they carry a torus operation and describe the T -equivariant cohomology using GoreskyKottwitz-MacPherson-theory. A...

متن کامل

A Positive Monk Formula in the S1-equivariant Cohomology of Type a Peterson Varieties

Peterson varieties are a special class of Hessenberg varieties that have been extensively studied e.g. by Peterson, Kostant, and Rietsch, in connection with the quantum cohomology of the flag variety. In this manuscript, we develop a generalized Schubert calculus, and in particular a positive Chevalley-Monk formula, for the ordinary and Borel-equivariant cohomology of the Peterson variety Y in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017